Classification of satellite cloud imagery based on multi-feature texture analysis and neural networks

نویسندگان

  • Christina I. Christodoulou
  • Silas C. Michaelides
  • Constantinos S. Pattichis
  • Kyriakos Kyriakou
چکیده

The aim of this work was to develop a system based on modular neural networks and multi-feature texture analysis that will facilitate the automated interpretation of cloud images. This will speed up the interpretation process and provide continuity in the application of satellite imagery for weather forecasting. A series of infrared satellite images from the Geostationary satellite METEOSAT7 were employed in this research. Nine different texture feature sets (a total of 55 features) were extracted from the segmented cloud images using the following algorithms: first order statistics, spatial gray level dependence matrices, gray level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws texture energy measures, fractals, and Fourier power spectrum. The neural network SOFM classifier and the statistical KNN classifier were used for the classification of the cloud images. Furthermore, the classification results of the different feature sets were combined improving the classification yield to 91%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

A study of cloud classification with neural networks using spectral and textural features

The problem of cloud data classification from satellite imagery using neural networks is considered in this paper. Several image transformations such as singular value decomposition (SVD) and wavelet packet (WP) were used to extract the salient spectral and textural features attributed to satellite cloud data in both visible and infrared (IR) channels. In addition, the well-known gray-level coo...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001